これを定義といいます。
定義というものはただ人間がそう決めた、
というだけで理屈のないものです。
この章でベクトルの外積は、
大きさはベクトルa,bの作る平行四辺形の面積、
向きはベクトルaからbの方向に右ねじが進む方向
のベクトルである、という話をしました。
例えば、これがなぜaからbの方向に右ねじが進む方向なのか、
その逆の方向ではダメなのか?
と問いかけても数学は答えを返してくれません。
定義は疑うものではなくて、
その定義を無条件で受け入れた時、
その先にどんな世界が広がっているか調べること、
それが数学という学問なのです。
数学は論理的と言われますが、
その原点である定義は、
ただ決めただけであって論理的というわけではありません。
私はこの関係はスポーツのルールに似ていると考えています。
例えば、サッカーはなぜ手を使ってはいけないのでしょうか?
バスケットボールはなぜボールを持って
走ってはいけないのでしょうか?
この問いに論理的な答えはありません。
しかし、この理不尽なルールを受け入れた結果、
ドリブルなどのテクニックやゲームの戦術など、
人間にとって興味深い世界が広がるのです。
数学に話を戻すと、
円周率が直径と円周の比であること、
つまり(π=3.14159…)であることも人間が決めただけであって、
それに論理的な意味はありません。
別に半径と円周の比にしてしまっても
数学の体系的には何の問題もないのです。
この章で、オイラーの等式を紹介しました。
この式は数学の式の中で一番美しいとも言われますが、
仮に円周率が半径と円周の比で定義されていると
円周率は今の2倍の値(π=6.2831…)になり、
マイナスが取れてより美しい?形になります。
ですので、円周率を直径と円周の比で定義してしまったことを、
人類の大きな過ちである、と考える数学者の方もいるようです。
どう決めてしまっても問題はないのですが、
一度決めたことを覆すことはできないのですね。